Открытие закономерностей постоянства состава и возникновение стехиометрии


вернуться в оглавление книги...

Н.А.Фигуровский, "Очерк общей истории химии. От древнейших времен до начала XIX в." Издательство "Наука", Москва, 1969 г.
OCR Biografia.Ru

ОТКРЫТИЕ ЗАКОНОМЕРНОСТЕЙ ПОСТОЯНСТВА СОСТАВА И ВОЗНИКНОВЕНИЕ СТЕХИОМЕТРИИ

Возвращаясь еще раз к анализу и общей оценке развития химии на рубеже XVIII—XIX вв., следует отметить наряду с экспериментальными достижениями и сделанные отдельными химиками попытки обобщений. Такого рода попытки могли возникнуть, естественно, лишь на фоне количественных определений состава солей, т. е. установления соотношений между кислотами и основаниями в солях. Именно развитие исследований в этом направлении и составляло главное содержание «аналитического» периода в истории химии.
Еще в XVII в. химики не только догадывались, но и хорошо знали, что в состав солей входят кислоты и щелочи. Ван-Гельмонт в 1643 г. говорил даже о насыщении кислот щелочами при образовании солей. Г. Бургаве, описывая процесс нейтрализации кислоты щелочью, указывал на существование точки насыщения при добавлении раствора кислоты к раствору щелочи до исчезновения щелочной реакции раствора. По его мнению, в результате насыщения (saturatio) кислоты щелочью образуется соль, «которая не является ни щелочью, ни кислотой, но прочным образованием из них обоих». В конце XVII в., как мы видели, Гомберг пытался установить количество различных кислот, которое необходимо для нейтрализации 1 унции поташа, т. е. до исчезновения щелочной реакции его раствора.
Однако более или менее достоверные сведения о химическом составе солей и об отношениях, в которых соединяются кислоты и основания с образованием нейтральных солей, были получены только почти через 100 лет после Гомберга. Главная заслуга в этой части принадлежит Бергману, который начиная с 1775 г. провел множество анализов солей. Такого же рода анализами занимались позднее и многие другие химики; особенно большие достижения принадлежат Вокелену, Кирвану, Ловицу, Клапроту. Но никто из них не смог установить каких-либо закономерностей в соотношениях между кислотами и основаниями в солях.
Некоторые полагали (см. ниже), что количество кислоты, необходимое для нейтрализации данного количества определенного основания (и наоборот), зависит лишь от величины химического сродства кислоты к основанию. Поэтому главная цель, стремясь к которой, они заботились о точности анализов, состояла в создании «таблиц сродства», в которых для каждого основания или кислоты составлялся ряд оснований или кислот «по степени убывающего сродства» к данному основанию или кислоте. Иначе сказать, основания или кислоты в этих рядах располагались друг за другом по убывающим количествам, которые необходимы для нейтрализации определенного количества основания (или кислоты).
Хотя такие таблицы и не получили широкого распространения и всеобщего признания, как, например, таблицы Бергмана, в которых «химическое сродство» выражалось некоторой «силой» вытеснения одной кислоты другой из соли, они нередко проводились в статьях отдельных авторов и служили предметом размышлений, догадок и гипотез.
Среди виднейших химиков, занимавшихся исследованием количественных отношений между кислотами и основаниями в солях, был Карл Фридрих Венцель (1740—1793). Он получил медицинское (хирургическое) образование в Голландии, где изучал также фармацию. В качестве судового хирурга он совершил путешествие в Гренландию, а затем несколько лет служил в голландском флоте. В 1766 г. он вернулся на родину (в Германию) и занимался в Лейпциге химией и металлургией. В этих областях он достиг больших успехов и в 1780 г. стал директором Фрейбергских рудников в Саксонии. В 1777 г. появилась его книга «Ученио о химическом сродстве тел».
Заинтересовавшись анализами солей и пытаясь отыскать закономерности в их составе на основе принятых в его время флогистических представлений, Венцель обратил внимание на взаимодействие нейтральных солей (45). Он обнаружил, что если две нейтральные соли «разлагают» друг друга, то всегда оказывается, что получившиеся продукты нейтральны. Таким образом, в данном случае химическое взаимодействие не нарушает нейтральности. Убедившись на ряде примеров, что это положение верно, Венцель пришел к выводу, что различные количества оснований (щелочей, земель), которые необходимы для того, чтобы нейтрализовать одно и то же количество какой-либо кислоты, в тех же самых отношениях (друг к другу), будут требоваться и для нейтрализации определенных количеств всех других кислот.
Для подтверждения этого правила Венцель рассматривает следующий пример (интересный как пример своеобразных стехиометрических расчетов последней четверти XVIII в.) (46). Возьмем, пишет он, водный раствор 363 весовых частей селитрянокислой извести (нитрата кальция), содержащей по анализу 123 части извести (СаО) и 240 частей селитряной (азотной) кислоты
---------------------------------------------------
45. Соли в то время были единственным классом соединений, которые систематически исследовались количественно с точки зрения установления содержания в них кислот и оснований. О взглядах и опытах Венцеля см. кн.: Н. К о р p. Geschichte... Т1. II, 1844, S. 356 ff; J. R. Р а r t i n g t о n. A History of Chemistry, vol. III. London, 1962, p. 671—673.
46. Приведенный расчет см. в кн.: Н. К о р p. Geschichte... Tl.II, S. 357.
------------------------------------------------
(N2О5). Разложим эту соль, смешав ее с сернокислым кали (сульфат калия). В этой, последней соли было найдено 240 частей серной кислоты и 290,4 части кали (К2О). В специальном опыте было найдено, что 240 частей серной кислоты нейтрализуются 162,5 частями извести. Следовательно, 123 части извести, которые содержатся в растворе 363 частей нитрата кальция, требуют для нейтрализации 181,5 частей серной кислоты. А это количество серной кислоты связывает в нейтральную соль 220 частей кали. Таким образом, для полного разложения 363 частей нитрата кальция требуется 181,5 частей серной кислоты и 220 частей кали, т. е. 401,5 частей сульфата калия. В этом случае 123 весовых части извести нейтрализуют 181,5 частей серной кислоты и в растворе, таким образом, должно остаться 220 частей кали и 240 частей азотной кислоты, т. е. те количества обоих веществ, которые как раз достаточны для их полной взаимной нейтрализации. В результате раствор остается нейтральным.
Таким образом, зная весовое содержание кислоты и основания в нитрате кальция, сульфате калия и сульфате кальция, очевидно, можно рассчитать весовые соотношения кислоты и основания в нитрате калия. Венцель экспериментально проверил полученные в результате такого расчета величины и нашел, что на 240 частей азотной кислоты в этой соли содержится 222,66 частей кали (по расчету на 240 частей кислоты приходится 220 частей кали).
Нетрудно понять, что приведенный расчет мог бы послужить исходным пунктом для весьма важных и далеко идущих выводов. Однако Венцель на этом остановился. По-видимому, в теоретических вопросах он был совершенно отсталым человеком. Об этом свидетельствует и написанная им книга, озаглавленная «Введение в высшую химию» (1773г.), в которой автор защищает чисто алхимические идеи.
Современники Венцеля — химики — не обратили внимания на его сочинение о сродстве тел, на произведенные им анализы солей и их интерпретацию. Вероятно, причиной невнимания к сочинению Венцеля было то, что в 1770—1780-х годах большинство химиков было увлечено новыми открытиями и новыми идеями химиков-пневматиков, в частности Лавуазье. К тому же анализы Венцеля не совпадали с анализами известных и авторитетных химиков того времени — Бергмана и Кирвана, хотя и были несколько точнее.
Впрочем, наблюдения Венцеля, касающиеся неизменности нейтральной реакции растворов солей при добавлении к ним нейтральных растворов других солей, не могли считаться в то время новостью и, во всяком случае, не представлялись химиками удивительными, поскольку считались само собой разумеющимися. Подобные явления наблюдались и другими учеными. Бергман, например, заметил, что нейтральные растворы металлических солей могут быть осаждены другими металлами без изменения нейтральной реакции раствора. Бергман объяснил это явление с флогистических позиций тем, что осажденный металл воспринимает флогистон, а осаждающий — отдает столько же флогистона. Опыты Бергмана были известны Лавуазье, который их повторил и расширил и объяснил их с точки зрения кислородной теории, т. е. прямо противоположно Бергману. По мнению Лавуазье, количества осажденного и растворенного металла в описанном случае соединены с равными количествами кислорода (47).
Однако ни Бергман, ни Лавуазье не смогли, подобно Венцелю, на основе наблюдаемых фактов и их объяснений сделать отчетливые и ясные выводы о соотношениях (соединительных весах) кислот и оснований в солях, несмотря на то что выводы, так сказать, сами собой напрашивались при сопоставлении результатов нескольких анализов. Открытие эквивалентных отношений и соединительных весов было сделано позднее и лишь было подготовлено исследованиями химиков «аналитического периода».
Одним из химиков этого периода, получившим новые и важные результаты в установлении постоянных отношений составных частей в сложных соединениях, был Иеремия Веньямин Рихтер (1762—1807). В молодости семь лет он служил в корпусе военных инженеров, а с 1785 г. изучал математические и философские науки в Кенигсберге. Он слушал здесь лекции Иммануила Канта (1724—1804) и, как думают некоторые историки химии, воспринял от него не только манеру туманно выражаться, но и многие философские и естественнонаучные идеи. По профессии Рихтер был инженером-строителем, но еще до поступления в университет интересовался химией и физикой. Химию он изучал по «Химическому словарю» Макёра. С 1794 г. Рихтер стал горным секретарем и пробирером в Горном округе Бреслау. Несколько лет спустя он стал асессором при управлении Берлинского горного округа и «арканистом» (*) Фарфоровой мануфактуры в Берлине.
Все сочинения Рихтера проникнуты идеей приложения математики к химии. Исходя из старинного изречения: «Бог устроил
------------------------------------------------------
47. См.: А. Ладенбург. Указ, соч., стр. 46.
*. Арканист (от латинского arcanus — тайный) — химик, в обязанности которого входило составление и хранение в тайне рецептов фарфоровых масс, глазурей, красок для живописи по фарфору и т. п.
------------------------------------------------------
все по мере, числу и весу», Рихтер рассматривал химию как раздел прикладной математики и всюду стремился отыскать математическую зависимость, не останавливаясь при этом и перед соответствующими «исправлениями» опытных данных. В 1789 г. появилась его работа «О применении математики к химии». В дальнейшем Рихтер выпустил несколько сочинений, посвященных закономерностям в численных отношениях между составными частями в различных сложных соединениях.
В 1792—1794 гг. вышла в трех частях основная работа Рихтера «Стехиометрия, или искусство измерения химических элементов». Первая часть этого труда посвящена «чистой стехиометрии», «термиметрии» и «флогиметрии». Следующие две части содержат данные по «прикладной стехиометрии». Кроме этого труда Рихтер издавал нечто вроде периодического издания под заглавием «О новых направлениях в химии» (всего вышло 11 томов, 1792—1802) и другие сочинения.
Главные сочинения Рихтера вышли в период, когда кислородная теория была уже признана всеми виднейшими химиками Европы. Формально и Рихтер заявил об отказе от теории флогистона и признании новой химии, но по существу его сочинения написаны в духе флогистической теории и, кроме того, туманны и труднодоступны для понимания.
Как представитель «аналитического периода» в развитии химии Рихтер занимался анализами сложных соединений, прежде всего солей, с целью установления в них численных соотношений между содержанием кислот и оснований. Но этим он не ограничился. На основе данных многочисленных анализов он составил ряды относительных весовых количеств кислот, которые необходимы для нейтрализации определенного количества какой-либо щелочи и, наоборот, щелочей, необходимых для нейтрализации определенного количества какой-либо кислоты. Такие ряды, называвшиеся Рихтером рядами масс, или рядами нейтрализации, вполне соответствовали стремлениям химиков того времени к систематизации фактов и, прежде всего, к нахождению закономерностей химического сродства между кислотами и основаниями...
...Таким образом, по существу, Рихтер нашел соединительные веса кислот и оснований в солях. Такого рода расчеты, как и всю область экспериментального определения весовых (относительных) количеств кислот и оснований в солях и составление рядов нейтрализации Рихтер назвал стехиометрией (от — «стихия», «начало», «элемент» — и «мера»).
Следует отметить, что в своей стехиометрии Рихтер исходил из факта, что нейтральность растворов солей при добавлении к ним нейтральных растворов других солей не изменяется (двойное разложение). Он писал: «Если два нейтральных раствора (солей) смешать вместе и при этом присходит разложение, то образующиеся продукты оказываются почти без исключения также нейтральными. Но если оба раствора, или один из них, не нейтральны, то и конечные продукты также не будут нейтральными» (49).
По-видимому Рихтеру, а не Венцелю, как утверждал Берцелиус, принадлежит первая формулировка закона нейтральности (50).
Упомянем также и об исследованиях Рихтера по осаждению металлов из растворов. Наблюдая вытеснение одного металла другим из раствора соли, Рихтер пытался использовать полученные при этом данные для расчета количества флогистона (флогиметрия), а в дальнейшем — кислорода в металлических окисях. Представление о ходе мысли Рихтера в данном случае дает следующее его высказывание: «Если разложить водный раствор какой-нибудь металлической нейтральной соли другим металлическим флогистическим субстратом, т. е. другим металлом в металлическом виде, так, чтобы не только металл, бывший растворенным, выделился в совершенно металлическом виде, но ни растворяющая кислота, ни с ней соединенная вода не разложились, то массы жизненного воздуха, которые должны соединиться с равными массами металлических субстратов, чтобы эти последние могли
----------------------------------------------------
49. С. L. Bert hoi let. Essai de Statique chimique, part. I, p. 134.
50. Большинство немецких историков химии указывает, что Берцелиус неправильно приписал открытие закона нейтральности Венцелю (который, как мы видели, считал «высшей химией» алхимию) и что лишь Г. И. Гесс исправил эту ошибку (см., например: В. Оствальд. Эволюция основных проблем химии. М., 1909, стр. 36—37; А. Ладенбург. Указ, соч., стр. 47). Вместе с тем немецкие историки химии настойчиво утверждают, что Рихтер ранее Дальтона, Гей-Люссака, Волластона и других пришел к весьма важным выводам, лежащим в основе атомистики (см., например: Э. М е й е р. Указ, соч., стр. 150—151). Однако, как пишет В. Оствальд о Рихтере, «его приемы мышления... еще не понятны и не оценены так, как они того заслуживают» (В. О с т в а л ь д. Указ, соч., стр. 31). По нашему мнению, сейчас можно полностью оценить заслуги Рихтера.
-----------------------------------------------------
раствориться в кислотах, будут обратно пропорциональны массам (или весам) осаждающих и осажденных металлических субстратов из нейтральной металлической соли» (51).
Таким образом, Рихтер действительно достаточно широко развил стехиометрию солей. Однако в рядах нейтрализации он видел не средство для расчета состава различных солей, с точки зрения содержания в них кислот и оснований, а нечто вроде «закона природы». Конечно, Рихтер считал, что соединительные веса, приведенные в его рядах нейтрализации, могут выражать силы сродства. Фишер, который рассчитал данные Рихтера, прямо указывает, что числа в обеих колоннах рядов могут рассматриваться как мера силы сродства (52).
Однако Рихтер интересовался даже не этой возможностью выражения силы сродства. Он искал (совершенно в духе философии Канта) наиболее общие «мировые» законы и хотел свои данные сопоставить с данными из других областей науки, чтобы констатировать единство и общность законов. Во времена Рихтера полагали, например, что относительные расстояния планет от солнца можно выразить рядом чисел в геометрической прогрессии (ср. с 3-м законом Кеплера). По аналогии с этим законом Рихтер принял, что при расположении чисел в рядах нейтрализации в порядке их возрастания члены рядов должны подчиняться арифметической и геометрической прогрессиям.
Так, он считал, что для трех щелочей, стоящих последовательно друг за другом в ряду нейтрализации, их весовые количества (соединительные веса) должны выражаться прогрессией: 1) А, 2) А + В, 3) А + 5В.
Для земель прогрессия в ряду должна иметь вид: 1) А, 2) А + В, 3) А + 3В, 4) А + 9В, 5) А + 19В, где А и В — целые числа.
Весовые количества (соединительные веса) в ряду нейтрализации кислот (четырех минеральных кислот) выражаются следующей прогрессией (53): с, cd3, cd5, cd7, а другие кислоты, за исключением фосфорной, дают прогрессию с, cd3, cd4, cd8, cd11, cd14, cd15, cd16, где с и d — некоторые целые числа.
-------------------------------------------------
51. J. R i с h t e r. Uber die neueren Gegenstande der Chemie. Bd. III. Abt. 8, S. 83 (цит. по: А. Ладенбург. Указ, соч., стр. 49).
52. См.: С. L. В е г t h о l l е t. Указ, соч., стр. 137.
53. Там же, стр. 137; Н. К о р p. Geschichte... T1. II, S. 361.
-------------------------------------------------
В том случае, если один или несколько членов таких прогрессий не находили себе примера среди известных в то время кислот и оснований, Рихтер полагал, что такие кислоты и основания еще не открыты. Когда в конце XVIII в. Тромсдорф (стр. 404) при исследовании минерала берилла обнаружил какую-то новую, не известную до тех пор землю, Рихтер тотчас же определил ее место в ряду нейтрализации и заявил, что она будет заполнять пробел в ряду. Однако скоро обнаружилось, что Тромсдорф ошибся, приняв за новую землю давно известный фосфат кальция.
Сопоставляя свои данные о вытеснении металлов с точки зрения химического сродства с данными бергмановских таблиц сродства, Рихтер констатирует: «Количественный порядок удельной нейтральности металлов по отношению к витриольной (серной.— Н.Ф.) кислоте совершенно не соответствует тому обыкновенному порядку, в котором один металл выделяется другим из раствора в кислоте; он скорее аналогичен обратному количественному порядку дефлогистизациии вполне соответствует взаимному окислению» (54). Таким образом, Рихтер был на пороге открытия эквивалентов и, несомненно, мог бы явиться одним из основоположников химии, если бы стоял на более прогрессивных теоретических позициях. Обнаружив определенные отношения в содержании кислот и оснований в солях и даже пользуясь полученными данными для расчета состава солей, Рихтер, однако, не услышал сигнала, который ему посылала природа, раскрывшая перед ним закономерности в составе сложных химических соединений. Причина этого кроется в том, что Рихтер совершенно обошел атомистические представления при разработке своей стехиометрии и, вместо того, чтобы попытаться объяснить общую внутреннюю связь в отношениях весового содержания кислот и оснований в солях, направил свои усилия на бесплодные поиски закономерностей (арифметических и геометрических прогрессий) в рядах нейтрализации. Не удивительно поэтому, что его работы не привлекли внимания ученых того времени. К тому же его манера туманно излагать свои мысли не способствовала успеху его идей. Однако имя Рихтера не осталось в неизвестности для его современников и последующих поколений. Г.Е. Фишер — переводчик на немецкий язык книги Бертолле «Исследования законов сродства» (55) — заинтересовался числами, собранными в рядах нейтрализации Рихтера, и объединил, как уже говорилось, все данные, полученные Рихтером, в двух таблицах и тем самым сделал наглядным и понятным расчет соотношений кислот и оснований
--------------------------------------------------------
54. Цит. по: А. Ладенбург. Указ, соч., стр. 49.
55. С. L. В е г t h о l l e t. Recherches sur les lois de I'affinite. Paris. An. IX [1801].
-------------------------------------------------------
в солях на основе анализов нескольких солей. «Надо, — писал Фишер, — только определить количественные отношения одной кислоты к различным щелочным основаниям, затем достаточно знать в одном лишь соединении относительные количества всякой другой кислоты, соединенной с щелочным основанием, и тогда уже простым вычислением можно получить количественные соотношения кислот во всех остальных соединениях».
Составленные Фишером ряды были напечатаны по-немецки в 1802 г., а при издании в следующем году в Париже «Опыта химической статики» Бертолле включил в эту книгу ряды нейтрализации Рихтера, приведя примечание Фишера. Таким образом, обобщенные результаты Рихтера и его идеи об арифметической и геометрической прогрессиях в рядах нейтрализации стали известны ученым. Однако и тогда они не привлекли внимания. Время для внедрения в химию понятия «эквивалент» еще не пришло. Оно наступило несколькими годами позже, уже после появления и распространения химической атомистики Дж. Дальтона в начале XIX в.
Как мы увидим в дальнейшем, Дальтон пришел к идее атомистических отношений в соединениях, основываясь на данных, подобных данным Рихтера, даже значительно более ограниченных. Таким образом, данные Рихтера могли бы послужить исходными для внедрения в химию атомистического учения. Они, однако, не стали таковыми. В начале XIX в. всеобщий интерес к новым проблемам химической атомистики привел к забвению идей Рихтера.